
A Comparison of Alternative Continuous Display Techniques with

Heterogeneous Multi-Zone Disks �

Shahram Ghandeharizadeh and Seon Ho Kim

Department of Computer Science

University of Southern California

Los Angeles, California 90089

Abstract

A number of recent technological trends have made data intensive applications such as contin-
uous media (audio and video) servers a reality. These servers are expected to play an important
role in applications such as video-on-demand, digital library, news-on-demand, distance learning,
etc. Continuous media applications are data intensive and might require storage subsystems that
consist of hundreds of (multi-zone) disk drives. With the current technological trends, a homoge-
neous disk subsystem might evolve to consist of a heterogeneous collection of disk drives. Given
such a storage subsystem, the system must continue to support a hiccup-free display of audio
and video clips. This study describes extensions of four continuous display techniques for multi-
zone disk drives to a heterogeneous platform. These techniques include IBM's Logical Track [21],
HP's Track Pairing [4], and USC's FIXB [9] and dead-line driven techniques [10]. We quantify
the performance tradeo� associated with these techniques using analytical models and simulation
studies. The obtained results demonstrate tradeo�s between the cost per simultaneous stream
supported by a technique, the wasted disk space, and the incurred startup latency.

1 Introduction

Continuous media objects, audio and video clips, are large in size and must be retrieved at a pre-

speci�ed rate in order to ensure their hiccup-free display [24, 8]. Even with the introduction of 50

gigabyte disk drives, a video library consisting of 1000 MPEG-2 titles (with an average display time

of 90 minutes) requires sixty such disks for data storage1. Over time such a storage system will evolve

to consist of a heterogeneous collection of disk drives. This is because the system administrator is

forced to buy new disk drives over time and the original disk models will either be scarce or simply

unavailable at the time of purchase. Consider each observation in turn. There are several reasons

�This research was supported in part by a Hewlett-Packard unrestricted cash/equipment gift, and the National

Science Foundation under grants IRI-9203389 and IRI-9258362 (NYI award).
1Assuming an average bandwidth requirement of 4 Mbps for each clip, the system designer might utilize additional

disk drives to satisfy the bandwidth requirement of this library, i.e., number of simultaneous users accessing the library.

1

why a system administrator might be forced to buy new disk drives over time. First, the application

might require either a larger storage capacity due to introduction of new titles or a higher bandwidth

due to a larger number of users accessing the library. Second, existing disks might fail and need to

be replaced2. The system administrator may not be able to purchase the original disk models due

to the technological trends in the area of magnetic disks: Approximately every 12 to 18 months, the

cost per megabyte of disk storage drops by 50%, its storage space doubles in size, and its average

transfer rate increases by 40% [20, 14]. Older disk models are discontinued because they cannot

compete in the market place. For example, a single manufacturer introduced three disk models in

the span of six years, a new model every two years, see Table 1. The oldest model (introduced in

1994) costs more than the other two while providing both a lower storage capacity and bandwidth.

With a heterogeneous disk subsystems, a continuous media server must continue to deliver the

data to a client at the bandwidth pre-speci�ed by the clip. For example, if a user references a

movie that requires 4 megabits per second (Mbps) for its continuous display, then, once the system

initiates its display, it must be rendered at 4 Mbps for the duration of its presentation3. Other-

wise, a display may su�er from frequent disruptions and delays, termed hiccups. Numerous stud-

ies [16, 19, 2, 23, 3, 11, 12] have described techniques in support of a hiccup-free display assuming a

homogeneous collection of single-zone disk drives. Single-zone disk drives provide a constant transfer

rate. A multi-zone disk drive consists of a number of regions (termed zones) that provide a di�erent

storage capacity and transfer rate. For example, the Seagate Barracuda 18 provides 18 gigabyte of

storage and consists of 9 zones (see Table 1). To the best of our knowledge, there are only four

techniques in support of hiccup-free display with multi-zone disk drives: IBM's Logical Track [21],

Hewlett Packard's Track Pairing [4] and USC's FIXB [9] and dead-line driven [10] techniques. Stud-

ies that investigate stochastic analytical models in support of admission control with multi-zone

disks, e.g., [18], are orthogonal because they investigate only admission control (while the above four

techniques describe how the disk bandwidth should be scheduled, the block size for each object, and

admission control). Moreover, we are not aware of a single study that investigates hiccup-free display

using a heterogeneous collection of multi-zone disk drives.

This study extends the four techniques to a heterogeneous disk subsystem. While these extensions

are novel and a contribution in their own right, we believe that the primary contribution of this

study is the performance comparison of these techniques and quanti�cation of their tradeo�. This is

because three of the described techniques assume certain characteristics about the target platform.

2Disks are so cheap and common place that it is more economical to replace the failed ones instead of �xing them.
3This study assumes constant bit rate media types. Extensions of this work in support of variable bit rate can be

accomplished by extending our proposed techniques with those surveyed in [1].

2

Seagate Barracuda 4LP Seagate Cheetah 4LP Seagate Barracuda 18
Introduced in 1994, 2 GBytes Introduced in 1996, 4 GBytes Introduced in 1998, 18 GBytes

capacity, with a $1,200 price tag capacity, with a $1,100 price tag capacity, with a $900 price tag

Zone Size Track No. of Rate Size Track No. of Rate Size Track No. of Rate

id (MB) Size (MB) Tracks (MB/s) (MB) Size (MB) Tracks (MB/s) (MB) Size (MB) Tracks (MB/s)

0 506.7 0.0908 5579 10.90 1017.8 0.0876 11617 14.65 5762 0.1268 45429 15.22

1 518.3 0.0903 5737 10.84 801.6 0.0840 9540 14.05 1743 0.1214 14355 14.57

2 164.1 0.0864 1898 10.37 745.9 0.0791 9429 13.23 1658 0.1157 14334 13.88

3 134.5 0.0830 1620 9.96 552.6 0.0745 7410 12.47 1598 0.1108 14418 13.30

4 116.4 0.0796 1461 9.55 490.5 0.0697 7040 11.65 1489 0.1042 14294 12.50

5 121.1 0.0767 1579 9.20 411.4 0.0651 6317 10.89 1421 0.0990 14353 11.88

6 119.8 0.0723 1657 8.67 319.6 0.0589 5431 9.84 1300 0.0923 14092 11.07

7 103.2 0.0688 1498 8.26 1268 0.0867 14630 10.40

8 101.3 0.0659 1536 7.91 1126 0.0807 13958 9.68

9 92.0 0.0615 1495 7.38

10 84.6 0.0581 1455 6.97

Table 1: Three di�erent Seagate disk models and their zone characteristics

Our performance results enable a system designer to evaluate the appropriateness of a technique in

order to decide whether it is worthwhile to re�ne its design by eliminating its assumptions.

The rest of this paper is organized as follows. Section 2 introduces �ve hiccup-free display

techniques for a heterogeneous disk subsystem: two for IBM's Logical Track (termed OLT1 and

OLT2), and one for each of the other techniques. Section 3 quanti�es the performance tradeo�

associated with these techniques. Our results demonstrate tradeo�s between cost per simultaneous

stream supported by a technique, its startup latency, throughput, and the amount of disk space that

it wastes. For example, while USC's FIXB results in the best cost/performance ratio, the potential

maximum latency incurred by each user is signi�cantly larger than the other techniques. The choice

of a technique is application dependent: One must analyze the requirements of an application and

choose a technique accordingly. For example, with nonlinear editing systems, the deadline driven

(DD) technique is more desirable than the others because it minimizes the latency incurred by each

users [15]. Our conclusions and future research directions are contained in Section 4.

2 Five Techniques

In order to describe the alternative techniques, we assume a con�guration consisting of K disk

models: D0, D1, ..., DK�1. There are qi disks belonging to disk model i: di0, d
i
1, ..., d

i
qi�1

. A disk

drive of model Di consists of mi zones. To illustrate, Figure 1 shows a con�guration consisting of

two disk models D0 and D1 (K=2). There are two disks of each model (q0=q1=2), numbered d
0
0, d

0
1,

d10, d
1
1. Disks of model 0 consist of 2 zones (m0=2) while those of model 1 consist of 3 zones (m1=3).

Zone j of a disk (say d00) is denoted as Zj(d
0
0). Figure 1 shows a total of 10 zones for the 4 disk drives

and their unique indexes. The kth physical track of a speci�c zone is indexed as PTk(Zj(d
i
0)).

3

Term De�nition

K number of disk models

Di disk model i, 0 � i < K

qi number of disks for disk model Di

dij jth disk drive of disk model Di, 0 � j < qi
mi number of zones for each disk of disk model Di

Zi(d
l

k) zone i of disk dlk, 0 � i < ml

#TRi number of tracks in disk model i

NT (Zi()) number of tracks in zone i

PTi(Zj()) track i of zone j, 0 � i < NT (Zj())

LTi logical track i

AvgRi average transfer rate of disk model i

Bi block size for disk model i

TW Seek Worst seek time of a zone

(including the maximum rotational latency time)

Tcseek Seek time required to make a complete span

R(Zi) Transfer rate of Zi
S(Zi) Storage capacity of Zi
Tscan Time to perform one sweep of m zones

TMUX(Zi) Time to read N blocks from zone Zi
RC Display bandwidth requirement (Consumption rate)

N Maximum number of simultaneous displays (throughput)

` Maximum latency time

Table 2: List of terms used repeatedly in this paper and their respective de�nitions

We use the set notation, f : g, to refer to a collection of tracks from di�erent zones of several disk

drives. This notation speci�es a variable before the colon and, the properties that each instance of the

variable must satisfy after the colon. For example, to refer to the �rst track from all zones of the disk

drives that belong to disk model 0, we write: fPT0(Zj(d
0
i)) : 8i; j where 0 � j < m0 and 0 � i < q0g.

With the con�guration of Figure 1, this would expand to:

fPT0(Z0(d
0
0)); PT0(Z0(d

0
1)); PT0(Z1(d

0
0)); PT0(Z1(d

0
1))g.

2.1 IBM's Logical Track [21]

This section starts with a description of this technique for a single multi-zone disk drive. Subse-

quently, we introduce two variations of this technique, OLT1 and OLT2, for a heterogeneous col-

lection of disk drives. While OLT1 constructs several logical disks from the physical disks, OLT2

provides the abstraction of only one logical disk. We describe each in turn.

With a single multi-zone disk drive, this technique constructs a logical track from each distinct

zone provided by the disk drive. Conceptually, this approach provides equi-sized logical tracks with

a single data transfer rate such that one can apply traditional continuous display techniques [2, 23,

3, 11, 17, 19]. With K di�erent disk models, a naive approach would construct a logical track LTk

4

...

...

...

...

...

...

Z ()d 0
0

0PT

LT0
0PT

0PT

0PT

0PT

Physical Disks Logical Disks

...

...

...

...

...

...

iPT

LTi
iPT

iPT

iPT

iPT

0

Z ()d 0
01

Z ()d 1
00

Z ()d 1
01

Z ()d 1
02

Z ()d 0
10

Z ()d 0
11

Z ()d 1
10

Z ()d 1
11

Z ()d 1
12

d 0
0

d 1
0

d 0
1

d 1
1

Disk model D 0 Disk model D 1

Figure 1: OLT1

by utilizing one track from each zone: LTk = f PTk(Zj(d
i
p)) : 8i; j; p where 0 � j < mi and 0 �

i < K and 0 � p < qi g. With this technique, the value of k is bounded by the zone with the

fewest physical tracks, i.e., 0 � k < Min[NT (Zj(d
i
qi
))], where NT (Zj(d

i
qi
)) is the number of physical

tracks in zone j of disk model Di. Large logical tracks result in a signi�cant amount of memory

per simultaneous display, rendering a continuous media server economically unavailable. In the next

section, we describe two optimized versions of this technique that render its memory requirements

reasonable.

2.2 Optimized Logical Track 1 (OLT1)

Assuming that a con�guration consists of the same number of disks for each model4, OLT1 constructs

logical disks by grouping one disk from each disk model (q logical disks). For each logical disk, it

constructs a logical track consisting of one track from each physical zone of a disk drive. To illustrate,

in Figure 1, we pair one disk from each model to form a logical disk drive. The two disks that

constitute the �rst logical disk in Figure 1, i.e., disks d00 and d10, consist of a di�erent number of

4This technique is applicable as long as the number of disks for each model is a multiple of the model with the

fewest disk drives: if min(qi), 0 � i < K, denotes the model with fewest disks, then qj is a multiple of min(qi).

5

zones (d00 has 2 zones while d10 has 3 zones). Thus, a logical track consists of 5 physical tracks, one

from each zone.

Logical disks appear as a homogeneous collection of disk drives with the same bandwidth. There

are a number of well known techniques that can guarantee hiccup-free display given such an abstrac-

tion, see [2, 23, 3, 11, 17, 19, 22]. Brie
y, given a video clip X, these techniques partition X into

equi-sized blocks that are striped across the available logical disks [3, 22, 23]: one block per logical

disk in a round-robin manner. A block consists of either one or several logical tracks.

Let Ti denote the time to retrieve mi tracks from a single disk of model Di consisting of mi zones:

Ti = mi � (a revolution time + seek time). Then, the transfer rate of a logical track (RLT) is:

RLT = size of a logical track
Max[Ti]

8i; 0 � i < K.

In Figure 1, to retrieve a LT from the �rst logical disk, d00 incurs 2 revolution times and 2 seeks to

retrieve two physical tracks, while disk d10 incurs 3 revolutions and 3 seeks to retrieve three physical

tracks. Assuming a revolution time of 8.33 milliseconds (7200 rpm) and the average seek time of

10 milliseconds for both disk models, d00 requires 36.66 milliseconds (T0 = 36.66) while d10 requires

54.99 (T1 = 54.99) milliseconds to retrieve a LT. Thus, the transfer rate of the LT is determined by

disk model D1. Assuming that a LT is 1 megabyte in size, its transfer rate is size of a logical track
Max[T0;T1]

=

1 megabyte
54:99 milliseconds

= 18.19 megabytes per second.

This example demonstrates that OLT1 wastes disk bandwidth by requiring one disk to wait for

another to complete its physical track retrievals. In our example, this technique wastes 33:3% of

D0's bandwidth. In addition, this technique wastes disk space because the zone with the fewest

physical tracks determines the total number of logical tracks. In particular, this technique eliminates

the physical tracks of those zones that have more than NTmin tracks, NTmin = Min[NT (Zj(d
i
qi
))],

i.e., it eliminates PTk(Zj(d
i
qi
)) with NTmin � k < NT (Zj(d

i
qi
)), for all i and j, 0 � i < K and

0 � j < mi.

2.3 Optimized Logical Track 2 (OLT2)

OLT2 extends OLT1 with the following additional assumption: each disk model has the same number

of zones, i.e., mi is identical for all disk models, 0 � i < K. Using this assumption, it constructs

logical tracks by pairing physical tracks from zones that belong to di�erent disk drives. This is

advantageous for two reasons. First, it eliminates the seeks required per disk drive to retrieve the

physical tracks. Second, assuming an identical revolution rate of all heterogeneous disks, it prevents

6

...

...

...

...

Z ()d 0
0

0PT

LT0

iPT

0PT

0PT

Physical Disks

Logical Disk
...

...

...

...

iPT

iPT

iPT

0PT

0

Z ()d 0
01

Z ()d 1
00

Z ()d 1
01

Z ()d 1
02

Z ()d 0
10

Z ()d 0
11

Z ()d 1
10

Z ()d 1
11

Z ()d 1
12

.

.

.

LTi

.

.

.

Disk model D 1Disk model D 0

Figure 2: OLT2

one disk drive to wait for another.

The details of OLT2 are as follows. First, it reduces the number of zones of each disk to that of

the disk with fewest zones: mmin = Min[mi] for all i, 0 � i < K. Hence, we are considering only

zones, Zj(d
i
k) for all i, j, and k (0 � i < K, 0 � j < mmin, and 0 � k < q). For example, in Figure 2,

the slowest zone of disks of d10 and d11 (Z2) are eliminated such that all disks utilize only two zones.

This technique requires mmin disks of each disk model (totally mmin�K disks). Next, it constructs

LTs such that no two physical tracks (from two di�erent zones) in a LT belong to one physical disk

drive. A logical track LTk consists of a set of physical tracks:

LTk = fPTk mod NTmin(Z(b k

NTmin

c+j) mod mmin
(dij mod mmin

)) : 8i; j where 0 � i < K and 0 � j < mming

The total number of LTs is mmin �NTmin, thus 0 � k < mmin �NTmin.

OLT2 may use several possible techniques to force all disks to have the same number of zones.

For each disk with �z zones more than mmin, it can either (a) merge two of its physically adjacent

zones into one, repeatedly, until its number of logical zones is reduced to mmin, (b) eliminate its

innermost �z zones, or (c) a combination of (a) and (b). With (a), the number of simultaneous

7

displays is reduced because the bandwidth of two merged zones is reduced to the bandwidth of the

slower participating zone. With (b), OLT2 wastes disk space while increasing the average transfer

rate of the disk drive, i.e., number of simultaneous displays. In [9], we describe a con�guration

planner that empowers a system administrator to strike a compromise between these two factors for

one of the techniques described in this study (HetFIXB). The extensions of this planner in support

of OLT2 is a part of our future research direction.

2.4 Heterogeneous Track Pairing (HTP)

We describe this technique in two steps. First, we describe how it works for a single multi-zone disk

drive. Next, we extend the discussion to a heterogeneous collection of disk drive. Finally, we discuss

the tradeo� associated with this technique.

Assuming a single disk drive (say d00) with #TR0 tracks, Track Pairing [4] pairs the innermost

track (TR#TR0�1(d
0
0)) with the outermost track (TR0(d

0
0)), working itself towards the center of

the disk drive. The result is a logical disk drive that consists of #TR0

2
logical tracks that have

approximately the same storage capacity and transfer rate. This is based on the (realistic) assumption

that the storage capacity of tracks increases linearly as one moves from the innermost track to the

outermost track. Using this logical disk drive, the system may utilize one of the traditional continuous

display techniques in support of hiccup-free display.

Assuming a heterogeneous con�guration consisting of K disk models, HTP utilizes Track Pairing

to construct track pairs for each disk. If the number of disks for each disk model is identical

(q0 = q1 = ::: = qK�1), HTP constructs qi groups of disk drives consisting of one disk from each of

the K disk models. Next, it realize a logical track that consists of K track pairs, one track pair from

each disk drive in the group. These logical tracks constitute a logical disk. Obviously, the disk with

the fewest number of tracks determines the total number of logical tracks for each logical disk. With

such a collection of homogeneous logical disks, one can use one of the popular hiccup-free display

techniques. For example, similar to both OLT1 and OLT2, one can stripe a video clip into blocks

and assign the blocks to the logical disks in a round-robin manner.

HTP wastes disk space in two ways. First, the number of tracks in a logical disk is determined by

the physical disk drive with fewest track pairs. For example, if a con�guration consists of two hetero-

geneous disks, one with 20,000 track pairs and the other with 15,000 track pairs, then the resulting

logical disk will consist of 15,000 track pairs. In essence, this technique eliminates 5,000 track pairs

from the �rst disk drive. Second, while it is realistic to assume that the storage capacity of each

8

TMUX TMUX TMUX

0 1 N-1 0 1 N-1 0 1 N-1...

...
TScan

Time

Tcseek

Zone ID

Disk
Activity

Z Z Z

T Tdisk(Z)

m-110

W_Seek 1

Figure 3: TScan and its relationship to TMUX

track increases linearly from the innermost track to the outermost one, it is not 100% accurate [4].

Once the logical tracks are realized, the storage capacity of each logical track is determined by the

track with the lowest storage capacity.

2.5 Heterogeneous FIXB

In order to describe this technique, we �rst describe how the system guarantees continuous dis-

play with a single multi-zone disk drive. Next, we describe the extensions of this technique to a

heterogeneous disk drive.

2.5.1 FIXB with one Multi-zone Disk [9]

With this technique, the blocks of an object X are rendered equi-sized. Let B denote the size of

a block. The system assigns the blocks of X to the zones in a round-robin manner starting with

an arbitrary zone. FIXB con�gures the system to support a �xed number of simultaneous displays,

N . This is achieved by requiring the system to scan the disk in one direction, say starting with

the outermost zone moving inward, visiting one zone at a time and multiplexing the bandwidth of

that zone among N block reads. Once the disk arm reads N blocks from the innermost zone, it is

repositioned to the outermost zone to start another sweep of the zones. The time to perform one such

a sweep is denoted as TScan. The system is con�gured to produce and display an identical amount

of data per TScan period. The time required to read N blocks from zone i, denoted TMUX(Zi), is

dependent on the transfer rate of zone i. This is because the time to read a block (Tdisk(Zi)) during

one TMUX(Zi) is a function of the transfer rate of a zone.

9

MEM

TIME
(Sec)

0

. . .

.

. . .

T

TMUX

Scan

(Z) i0 1 m-2 m-1TMUX (Z)TMUX (Z)TMUX (Z)TMUX(Z) T

Max
Required
Memory

R

(R

C

(Z)i RC-

cseek

)*T i(Z)

*(T i(Z)-T

Tdisk(Z)i

disk

MUX i(Z)disk)

Figure 4: Memory required on behalf of a display

Figure 3 shows TScan and its relationship with TMUX(Zi) form zones. During each TMUX period,

N active displays might reference di�erent objects. This would force the disk to incur a seek when

switching from the reading of one block to another, termed TW Seek. TW Seek also includes the

rotational latency time. At the end of a TScan period, the system observes a long seek time (Tcseek)

attributed to the disk repositioning its arm to the outermost zone. The disk produces m blocks of

X during one TScan period (m�B bytes). The number of bytes required to guarantee a hiccup-free

display of X during TScan should either be lower than or equal to the number of bytes produced by

the disk. This constraint is formally stated as:

RC � (Tcseek +
m�1X

i=0

TMUX(Zi)) � m�B (1)

The amount of memory required to support a display is minimized when the left hand side of

Equation 1 equals its right hand side.

During a TMUX , N blocks are retrieved from a single zone, ZActive. In the next TMUX period, the

system references the next zone Z(Active+1) mod m. When a display references object X, the system

computes the zone containing X0, say Zi. The transfer of data on behalf of X does not start until

the active zone reaches Zi. One block of X is transfered into memory per TMUX . Thus, the retrieval

of X requires f such periods. (The display of X may exceed
Pf�1

j=0 TMUX(Z(i+j) mod m) seconds

as described below.) The memory requirement for displaying object X varies due to the variable

transfer rate. This is best illustrated using an example. Assume that the blocks of X are assigned to

the zones starting with the outermost zone, Z0. If ZActive is Z0 then this request employs one of the

idle Tdisk(Z0) slots to read X0. Moreover, its display can start immediately because the outermost

10

zone has the highest transfer rate. The block size and N are chosen such that the data accumulates

in memory when accessing outermost zones and decreases when reading data from innermost zones

on behalf of a display (see Figure 4). In essence, the system uses bu�ers to compensate for the low

transfer rates of innermost zones using the high transfer rates of outermost zones, harnessing the

average transfer rate of the disk. Note that the amount of required memory reduces to zero at the

end of one Tscan in preparation for another sweep of the zones.

The display of an object may not start upon the retrieval of its block from the disk drive. This

is because the assignment of the �rst block of an object may start with an arbitrary zone while the

transfer and display of data is synchronized relative to the outermost zone, Z0. In particular, if the

assignment of X0 starts with a zone other than the outermost zone (say Zi, i 6= 0) then its display

might be delayed to avoid hiccups. The duration of this delay depends on: 1) the time elapsed

from retrieval of X0 to the time that block Xm�i is retrieved from zone Z0, termed TaccessZ0, and 2)

the amount of data retrieved during TaccessZ0. If the display time of data corresponding to item 2

(Tdisplay(m�i)) is lower than TaccessZ0, then the display must be delayed by TaccessZ0 � Tdisplay(m�i).

To illustrate, assume that X0 is assigned to the innermost zone Zm�1 (i.e., i = m�1) and the display

time of each of its block is 4.5 seconds, i.e., Tdisplay(1) = 4:5 seconds. If 10 seconds elapse from the

time X0 is read until X1 is read from Z0 then the display of X must be delayed by 5.5 seconds

relative to its retrieval from Zm�1. If its display is initiated upon retrieval, it may su�er from a 5.5

second hiccup. This delay to avoid a hiccup is shorter than the duration of a Tscan. Indeed, the

maximum latency observed by a request is Tscan when the number of active displays is less than5 N :

` = TScan = Tcseek +
m�1X

i=0

TMUX(Zi) (2)

This is because at most N �1 displays might be active when a new request arrives referencing object

X. In the worst case scenario, these requests might be retrieving data from the zone that contains

X0 (say Zi) and the new request arrives too late to employ the available idle slot. (Note that the

display may not employ the idle slot in the next TMUX because Zi+1 is now active and it contains

X1 instead of X0.) Thus, the display of X must wait one Tscan period until Zi becomes active again.

One can solve for the block size by observing from Figure 3 that TMUX(Zi) can be de�ned as:

TMUX(Zi) = N � (
B

R(Zi)
+ TW Seek) (3)

5When the number of active displays exceeds N then this discussion must be extended with appropriate queuing

models.

11

0

0

90 Mbps

80 Mbps

70 Mbps

80 Mbps

60 Mbps

70 Mbps

60 Mbps

50 Mbps

M0 M1 M2

scanTscanTscanT

X 0

X 1

X 3
X 5

X 6

X 2 X 7

X 4

d
0

1
d

0

2
d

Figure 5: HetFIXB

Substituting this into Equation 1, the block size is de�ned as:

B =
RC � (Tcseek +m�N � TW Seek)

m�RC �
Pm�1

i=0
N

R(Zi)

(4)

Observe that FIXB wastes disk space when the storage capacity of the zones is di�erent. This is

because once the storage capacity of the smallest zone is exhausted then no additional objects can

be stored as they would violate a round-robin assignment6.

2.5.2 Extensions of FIXB (HetFIXB)

With a heterogeneous collection of disks, we continue to maintain a Tscan per disk drive. While the

duration of a Tscan is identical for all disk drives, the amount of data produced by each Tscan is

di�erent. We compute the block size for each disk model (recall that blocks are equi-sized for all

zones of a disk) such that the faster disks compensate for the slower disks by producing more data

during their Tscan period. HetFIXB aligns the Tscan of each individual disk drive with one another

such that they all start and end in a Tscan.

6Unless the number of blocks for an object is less than m. We ignored this case from consideration because video

objects are typically very large.

12

To support N simultaneous displays, HetFIXB must satisfy the following equations.

M =
K�1X

i=0

Mi; where Mi = mi �Bi

AvgRi : AvgRj = Mi : Mj ; 0 � i; j < K

Tscan = Tp=K; where Tp =
M

RC

Tscani = Tcseek +
mi�1X

j=0

N(
Bi

R(Zj(Di))
+ seeki) � Tscan

where 0 � i < K.

To illustrate, assume a con�guration consisting of 3 disks, see Figure 5. Assume the average

transfer rates of disks, AvgR0 = 80 Mbps, AvgR1 = 70 Mbps, and AvgR2 = 60 Mbps respectively.

When RC = 4 Mbps, 1.5 Mbytes of data (M = 1:5 MB) is required every 3 seconds (Tp = 3

sec) to support a hiccup-free display. Based on the ratio among the average transfer rates of disk

models, M0 = 0:5715 MB, M1 = 0:5 MB, and M2 = 0:4285 MB. Thus, B0 = M0=m0 = 0:19 MB,

B1 = M1=m1 = 0:25 MB, B2 = M2=m2 = 0:14 MB. An object X is partitioned into blocks and

blocks are assigned into zones in a round-robin manner. When a request for X arrives, the system

retrieves X0, X1, and X2 (M0 = 3� B0 amount of data) from D0 during the �rst Tscan. A third of

M (0.5 MB) is consumed during the same Tscan. Hence, some amount of data, 0.0715 MB, remains

un-consumed in the bu�er. In the next Tscan, the system retrieves X3 and X4 (M1 = 2�B1 amount

of data) from D1. While the same amount of data (0.5 MB) is retrieved and consumed during this

Tscan, the accumulated data (0.0715 MB) still remains in the bu�er. Finally, during the last Tscan,

the system retrieves X5, X6, and X7 (M2 = 3 � B2 amount of data) from D2. Even though the

amount of data retrieved in this Tscan (0.4285 MB) is smaller than the amount of data displayed

during a Tscan (0.5 MB), there is no starvation because 0.0715 megabytes of data is available in the

bu�er. This process is repeated until the end of display.

2.6 Heterogeneous Deadline Driven (DD)

With this technique, a client issues block requests, each tagged with a deadline. Each disk services

block requests with the Earliest Deadline First policy. In [10], we showed that the assignment of

blocks to the zones should be independent of the frequency of access to the blocks. Thus, blocks are

assigned to the zones in a random manner. The size of the blocks assigned to each disk model is

13

Data

Time
0 1 2 3 4 5 6

 (blocks)

1

2

l

Figure 6: Deadline driven

di�erent. They are determined based on the average weighted transfer rate of each disk model. Let

WRi denote the weighted average transfer rate of disk model i:

WRi =

mi�1X

j=0

[S(Zj(Di))�R(Zj(Di))=

mi�1X

k=0

S(Zk(Di))]

WRi : WRj = Bi : Bj ; 0 � i; j < K

Assuming Bi � Bj where i < j and 0 � i; j < K, an object X is divided into blocks such that

the size of each block Xi is Bi mod K . Blocks with the size of Bi are randomly assigned to disks

belonging to model i. A random placement may incur hiccups that are attributed to the statistical

variation of the number of block requests per disk drive, resulting in varying block retrieval time.

Traditionally, double bu�ering has been widely used to absorb the variance of block retrieval time:

while a block in a bu�er is being consumed, the system �lls up another bu�er with data. However,

we generalize double bu�ering to N bu�ering and prefetching N-1 bu�ers before initiating a display.

This minimize the hiccup probability by absorbing a wider variance of block retrieval time, because

data retrieval is N-1 blocks ahead of data consumption.

We assume that, upon a request for a video clip X, a client: (1) concurrently issues requests for

the �rst N-1 blocks of X (to prefetch data), (2) taggs the �rst N-1 block requests with a deadline

equivalent to display time of a block, (3) starts display as soon as the �rst prefetched block arrives.

For example, in Figure 6, �rst three blocks are requested at the beginning. Then, the next block

request is issued immediately after a block in the bu�er is consumed. Obviously, there are other ways

of deciding both the deadline of the prefetched blocks and when to initiate display blocks. In [10],

we analyzed the impact of these alternative decisions and demonstrated that the combination of the

above two choices enhances system performance.

14

3 Performance Evaluation

In this section, we quantify the performance tradeo�s associated with alternative techniques. While

OLT1, OLT2, TP and HetFIXB were quanti�ed using analytic models, DD was quanti�ed using

a simulation study. We conducted numerous experiments analyzing di�erent con�gurations with

di�erent disk models from Quantum and Seagate. Here, we report on a subset of our results in order

to highlight the tradeo�s associated with di�erent techniques. In all results presented here, we used

the three disk models shown in Table 1. Both Barracuda 4LP and 18 provide a 7200 rpm while the

Cheetah provides a 10000 rpm. Moreover, we assumed that all objects in the database require a 4

Mbps bandwidth for their continuous display.

Figure 7 shows the cost per stream as a function of the number of simultaneous displays supported

by the system (throughput) for three di�erent con�gurations. Figure 7.a shows a system that is

installed in 1994 and consists of 10 Barracuda 4LP disks. Figure 7.b shows the same system two

years later when it is extended with 10 Cheetah disks. Finally, Figure 7.c shows this system in

1998 when it is extended with 10 Barracuda 18 disks. To estimate system cost, we assumed: a)

the cost of each disk at the time when they were purchased with no depreciation cost, and b) the

system is con�gured with su�cient memory to support the number of simultaneous displays shown

on the x-axis. We assumed that the cost of memory is $7/MB, $5/MB, and $3/MB in 1994, 1996,

and 1998, respectively. Additional memory is purchased at the time of disk purchases in order to

support additional users. (Once again, we assume no depreciation of memory.) While one might

disagree with our assumptions for computing the cost of the system, note that the focus of this study

is to compare the di�erent techniques. As long as the assumptions are kept constant, we can make

observations about the proposed techniques and their performance tradeo�.

In these experiments, OLT2 constructed logical zones in order to force all disk models to consist

of the same number of zones. This meant that OLT2 eliminated the innermost zone (zone 10) of

Barracuda 4LP, splitting the fastest three zones of Cheetah into six zones, and splitting the outermost

zone of Barracuda 18 into two. Figure 7.c does not show OLT1 and OLT2 because: a) their cost

per stream is almost identical to that shown in Figure 7.b, and b) we wanted to show the di�erence

between HetFIXB, DD, and HTP.

Figure 7 shows that HetFIXB is the most cost e�ective technique, however, it supports fewer

simultaneous displays as a function of heterogeneity. For example, with one disk model, it provides a

throughput similar to the other techniques. However, with 3 disk models, its maximum throughput

is lower than those provided by DD and HTP. This is dependent on the physical characteristics

15

100

200

300

Cost / Stream ($)

Throughput

0

110 120 130 140 150 160 170

HTP
OLT1
HetFIXB
OLT2
DD

100

200

300

Cost / Stream ($)

Throughput

0

200 250 300 350

HTP
OLT1
HetFIXB
OLT2
DD

100

Cost / Stream ($)

Throughput

0

400 500 600450 550

HTP

HetFIXB

HDD

50

a. One disk model (homogeneous) b. Two disk models (heterogeneous) c. Three disk models (heterogeneous)

Figure 7: Throughput and cost per stream

of the zones because HetFIXB requires the duration of Tscan to be identical for all disk models.

This requirement results in fragmentation of the disk bandwidth which in turn limits the maximum

throughput of the system. Generally speaking, the greater the heterogeneity, the greater the degree

of fragmentation. However, the zone characteristics ultimately decide the degree of fragmentation.

One may construct logical zones in order to minimize this fragmentation, see [9]. This optimization

is not reported because of strict space limitations imposed by the call for paper. It raises many

interesting issues that are not presented here. Regardless, the comparison shown here is fair because

our optimizations are applicable to all techniques.

OLT1 provides inferior performance as compared to the other techniques because it wastes a

signi�cant percentage of the available disk bandwidth. To illustrate, Figure 8 shows the percentage

of wasted disk bandwidth for each disk model with each technique when the system is fully utilized

(the trend holds true for less than 100% utilization). OLT1 wastes 60% of the bandwidth provided

by Cheetah and approximately 30% of Barracuda 18. Most of the wasted bandwidth is attributed

to these disks sitting idle. Cheetahs sit idle because they provide a 10,000 rpm as compared to 7200

rpm provided by the Barracudas. Barracuda 4LP and 18 disks sit idle because of their zone charac-

teristics. In passing, while di�erent techniques provide approximately similar cost per performance

ratios, each wastes bandwidth in a di�erent manner. For example, both HTP and HetFIXB provide

approximately similar cost per performance ratios, HTP wastes 40% of Cheetah's bandwidth while

HetFIXB wastes only 20% of the bandwidth provided by this disk model. HTP makes up for this

limitation by harnessing a greater percentage of the bandwidth provided by Barracuda 4LP and 18.

Figure 9 shows the maximum latency incurred by each technique as a function of the load imposed

on the system. In this �gure, we have eliminated OLT1 because of its prohibitively high latency (One

16

0

20

40

60

Wasted Disk BW (%)

 Cheetah
(10000 rpm, 7 zones)

 Barracuda 18
(7200 rpm, 9 zones)

 Barracuda 4LP
(7200 rpm, 11 zones)

: idle

: seek

HTP
OLT1

OLT2

HetF
IX

B
HDD

HTP
OLT1

OLT2

HetF
IX

B
HDD

HTP
OLT1

OLT2

HetF
IX

B
HDD

Figure 8: Wasted disk bandwidth

conclusion of this study is that OLT1 is not a competitive strategy.) The results show that HetFIXB

provides the worst latency while DD's maximum latency is below 1 second. This is because HetFIXB

forces a rigid schedule with a disk zone being activated in an orderly manner (across all disk drives).

If a request arrives and the zone containing its referenced block is not active then it must wait until

the disk head visits that zone (even if idle bandwidth is available). With DD, there is no such a rigid

schedule in place. A request is serviced as soon as there is available bandwidth. Of course, this is

at the risk of some requests missing their deadlines. This happens when many requests collide on a

single disk drive due to random nature of requests to the disks. In these experiments, we ensured

that such occurrences impacted one in a million requests, i.e., a hiccup probability is less than one

in a million block requests.

OLT2 and HTP provide a better latency as compared to HetFIXB because they construct fewer

logical disks [2, 12]. While OLT2 constructs a single logical disk, HTP constructs 10 logical disks,

and HetFIXB constructs 30 logical disks. In the worst case scenario (assumed by Figure 9), with

both HTP and HetFIXB, all active requests collide on a single logical disk (say dbottleneck). A small

fraction of them are activated while the rest wait for this group of requests to shift to the next

logical disk (in the case of HetFIXB, they wait for one Tscan). Subsequently, another small fraction

is activated on dbottleneck. This process is repeated until all requests are activated. Figure 9 shows

the incurred latency by the last activated request.

17

Maximum Latency (sec)

Throughput

0

160

100

40

80

60

20

120

140

350 400 450 500 550300

HTP

HetFIXB

OLT2

DD

Figure 9: Maximum startup latency

With three disk models (Figure 7.c), OLT1 and OLT2 waste more than 80% of disk space, HTP

and DD waste approximately 70% of disk space, while HetFIXB wastes 44% of the available disk

space. However, this does NOT mean that HetFIXB is more space e�cient than other techniques.

This is because the percentage of wasted disk space is dependent on the physical characteristics of the

participating disk drives: number of disk models, number of zones per disk, track size of each zone,

storage capacity of individual zones and disk drives. For example, with two disk models (Figure 7.b),

HetFIXB wastes more disk space when compared with the other techniques.

4 Conclusion and Future Directions

In this study, we quanti�ed the tradeo� associated with alternative multi-zone techniques when

extended to a con�guration consisting of heterogeneous disk drives. Ignoring OLT1, our principle

result is that no single strategy dominates on all metrics: throughput, startup latency, cost per

simultaneous display, and wasted disk space. All proposed techniques strive to distribute the load

of a single display evenly across the available disk bandwidth in order to prevent formation of

bottlenecks. They belong to a class of algorithm that is commonly termed non-partitioning. An

alternative approach might have been to partition resources into clusters and treat each cluster as

an independent server. For example, with a con�guration consisting of 3 disk models, we could have

constructed three servers and assigned objects to di�erent servers with the objective to distribute

the workload of the system as evenly as possible [7]. The system would replicate popular clips across

multiple servers in order to prevent formation of bottlenecks [13, 6]. Using this approach, one could

18

optimize system parameters (such as block size) for each con�guration independently in order to

maximize the performance of each subserver. This is ideal for static workloads that do not change

overtime. However, for dynamic workloads, one must employ detective techniques that monitor

the frequency of access to objects and replicate popular objects in order to prevent formation of

bottlenecks. In [26], we utilize a simulation model to show that this approach is generally inferior to a

non-partitioning scheme. This is because detective techniques must wait for formation of bottlenecks

prior to eliminating them [5].

In addition, recently we have quanti�ed fault-tolerant characteristics of a general non-partitioning

scheme for heterogeneous single-zone disk drives [25]. While extensions of HTP to incorporate results

of [25] are trivial, it is not clear how HetFIXB and DD are impacted by the design of [25]. This is

another future research direction of this study.

References

[1] J. Al-Marri and S. Ghandeharizadeh. An Evaluation of Alternative Disk Scheduling Techniques in Support
of Variable Bit Rate Continuous Media. In Proceedings of the International Conference on Extending
Database Technology (EDBT), Valencia, Spain, March 23-27, 1998.

[2] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju. Staggered Striping in Multimedia Information
Systems. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages
79{89, 1994.

[3] S. Berson, L. Golubchik, and R. R. Muntz. A Fault Tolerant Design of a Multimedia Server. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages 364{375, 1995.

[4] Y. Birk. Track-pairing: a novel data layout for vod servers with multi-zone-recording disks. In IEEE
International Conference on Multimedia Computing and System, June 1995.

[5] H. Chou and D. J. DeWitt. An Evaluation of Bu�er Management Strategies for Relational Database
Systems. In Proceedings of the International Conference on Very Large Databases, 1985.

[6] A. Dan, M. Kienzle, and D. Sitaram. A Dynamic Policy of Segment Replication for Load-balancing in
Video-on-Demand Computer Systems. In ACM Multimedia Systems, number 3, pages 93{103, 1995.

[7] A. Dan and D. Sitaram. An Online Video Placement Policy based on Bandwidth toSpace Ratio (bsr).
In Proceedings of ACM SIGMOD, 1995.

[8] C. Freedman and D. DeWitt. The SPIFFI Scalable Video-on-Demand System. In SIGMOD Conference,
1995.

[9] S. Ghandeharizadeh, S. H. Kim, C. Shahabi, and R. Zimmermann. Placement of Continuous Media
in Multi-Zone Disks. In Soon M. Chung, editor, Multimedia Information Storage and Management,
chapter 2. Kluwer Academic Publishers, Boston, August 1996. ISBN: 0-7923-9764-9.

[10] S. Ghandeharizadeh and S.H. Kim. Design of Multi-user Editing Servers for Continuous Media. To appear
in the Multimedia Tools and Applications Journal.

[11] S. Ghandeharizadeh and S.H. Kim. Striping in Multi-disk Video Servers. In High-Density Data Recording
and Retrieval Technologies, pages 88{102. Proc. SPIE 2604, October 1995.

19

[12] S. Ghandeharizadeh, S.H. Kim, W. Shi, and R. Zimmermann. On Minimizing Startup Latency in Scalable
ContinuousMedia Servers. In Proceedings of Multimedia Computing and Networking, pages 144{155. Proc.
SPIE 3020, Feb. 1997.

[13] S. Ghandeharizadeh and C. Shahabi. Management of Physical Replicas in Parallel Multimedia Information
Systems. In Proceedings of the Foundations of Data Organization and Algorithms (FODO) Conference,
October 1993.

[14] E. Grochowski. Disk Drive Price Decline. In IBM Almaden Research Center, 1997.

[15] S.H. Kim and S. Ghandeharizadeh. Design of Multi-user Editing Servers for Continuous Media. In
International Workshop on the Research Issues in Data Engineering (RIDE'98), Feb. 1998.

[16] M. Leung, J. C. Lui, and L. Golubchik. Bu�er and I/O Resource Pre-allocation for Implementing Batching
and Bu�ering Techniques for Video-On-Demand Systems. In Proceedings of the International Conference
on Data Engineering, 1997.

[17] R. Muntz, J. Santos, and S. Berson. RIO: A Real-time Multimedia Object Server. ACM Sigmetrics
Performance Evaluation Review, 25(2), Sep. 1997.

[18] G. Nerjes, P. Muth, and G. Weikum. Stochastic service guarantees for continuous data on multi-zone
disks. In the 16th Symposium on Principles of Database Systems (PODS'97), May 1997.

[19] B. Ozden, R. Rastogi, and A. Silberschatz. Disk Striping in Video Server Environments. In IEEE
International Conference on Multimedia Computing and System, June 1996.

[20] D. A. Patterson. Terabytes >> Tera
ops (or Why Work on Processors When I/O is Where the Action
is? In Key note address at the ACM-SIGMETRICS Conference, 1993.

[21] M.F. Mitoma S.R. Heltzer, J.M. Menon. Logical data tracks extending among a plurality of zones of
physical tracks of one or more disk devices. In U.S. Patent No. 5,202,799, April 1993.

[22] F.A. Tobagi, J. Pang, R. Baird, and M. Gang. Streaming RAID-A Disk Array Management System for
Video Files. In Proceedings of the First ACM Conference on Multimedia, August 1993.

[23] H.M. Vin, S.S. Rao, and P. Goyal. Optimizing the Placement of Multimedia Objects on Disk Arrays. In
IEEE International Conference on Multimedia Computing and System, May 1995.

[24] J. Wong, K. Lyons, D. Evans, R. Velthuys, G. Bochmann, E. Dubois, N. Georganas, G. Neufeld, M. Ozsu,
J. Brinskelle, A. Ha�d, N. Hutchinson, P. Iglinski, B. Kerherve, L. Lamont, D. Makaro�, and D. Szafron.
Enabling Technology for Distributed Multimedia Applications. In IBM System Journal, 1997.

[25] R. Zimmermann and S. Ghandeharizadeh. Continuous Media Placement and Scheduling in Heterogeneous
Disk Storage Systems. In Submitted to ACM Transactions of Database Systems.

[26] R. Zimmermann and S. Ghandeharizadeh. Continuous Display Using Heterogeneous Disk-Subsystems.
In Proceedings of ACM Multimedia Conference, Nov. 1997.

20

